Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Dis ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-2298463

ABSTRACT

BACKGROUND: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. RESULTS: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than against wild-type. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

2.
AIDS ; 37(5): 709-721, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2267958

ABSTRACT

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Subject(s)
COVID-19 , HIV Infections , Humans , Antibody Formation , COVID-19 Vaccines , COVID-19/prevention & control , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2 , Vaccination , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
3.
AIDS ; 37(5): F11-F18, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2239764

ABSTRACT

OBJECTIVE: Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN: A longitudinal observational cohort. METHODS: Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS: Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P  = 0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P  = 0.1) and BA.5-specific neutralization substantially ( P  = 0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P  = 0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P  < 0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION: Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third dose (or their most recent SARS-CoV-2 infection).


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2
4.
Nat Commun ; 13(1): 4888, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-2000886

ABSTRACT

Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , HIV Infections , HIV-1 , BNT162 Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Granzymes , HIV Infections/immunology , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , Virus Latency , mRNA Vaccines , nef Gene Products, Human Immunodeficiency Virus/genetics
5.
NPJ Vaccines ; 7(1): 28, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713167

ABSTRACT

Humoral responses to COVID-19 vaccines in people living with HIV (PLWH) remain incompletely characterized. We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain (RBD), ACE2 displacement and viral neutralization activities one month following the first and second COVID-19 vaccine doses, and again 3 months following the second dose, in 100 adult PLWH and 152 controls. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm3, though nadir CD4+ T-cell counts ranged as low as <10 cells/mm3. After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was associated with lower anti-RBD antibody concentrations and ACE2 displacement activity after one vaccine dose. Following two doses however, HIV was not significantly associated with the magnitude of any humoral response after multivariable adjustment. Rather, older age, a higher burden of chronic health conditions, and dual ChAdOx1 vaccination were associated with lower responses after two vaccine doses. No significant correlation was observed between recent or nadir CD4+ T-cell counts and responses to two vaccine doses in PLWH. These results indicate that PLWH with well-controlled viral loads and CD4+ T-cell counts in a healthy range generally mount strong initial humoral responses to dual COVID-19 vaccination. Factors including age, co-morbidities, vaccine brand, response durability and the rise of new SARS-CoV-2 variants will influence when PLWH will benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment or who have low CD4+ T-cell counts are needed, as are longer-term assessments of response durability.

SELECTION OF CITATIONS
SEARCH DETAIL